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Phase ordering dynamics of a vector order parameter 

A J Bray and K Humayun 
Depanment of Theoretical Physicr. The Universiiy, Manchester M13 9PL UK 

Received 30 October 1991 

AbStracL Mazenko's theory of phase ordering dynamics is generalized to an "component 
non-conserved wctor order parameter. ' h e  scaling timctions ior the equal-time and two- 
time mrrelalion functions are calculated. as well as the exponent characte~ing lhe decay 
of automrrelations. l i e  equal-lime correlation function is numerically quire close to that 
recently dculated by B n y  and Pun, and bj lbyoki, and rrhibits the Same F e r - l a w  
tail in its Fourier tmnsfonn, the lime-dependent stueture factor. 

1. Intmduction 

?he calculation of two-point correlation functions, for systems undergoing phase 
ordering following a quench into the ordered phase from high temperatures, is a 
long-standing challenge [l]. For a non-conserved scalar order parameter field @ ( r ,  t )  
it is well established that, in the late stages of growth, the equal-time correlation 
function is described by the scaling form 

C ( T , t )  = [+(.,t)d(z + T, t )1  = f ( . / L ( t ) )  (1) 

where the domain scale L(1)  t ' I2 .  Square brackets in (1) indicate an average over 
the ensemble of possible initial conditions. Although the origin of the t'/' growth 
has been understood for a long time [2], being due to the motion of domain walls 
driven by their curvature, the scaling function f (  z) has eluded exact calculation from 
iirst principles. Exact results arc available in a few special cases, namely the one- 
dimensional Glauber model [3], the one-dimensional O(n)-model with n = 2 [4], 
and the O ( n )  model for a = M for any d [S, 61, but not for the most physically 
interesting cases of small finite n and d = 2 and 3. 

A promising recent approach is due to Mazenko [7], huilding on the earlier work 
of Ohta, Jasnow and Kawasaki (OJK) [SI. The key idea in both theories is to introduce 
a nonlinear mapping between the order parameter field + ( T ,  t )  , which has 'sharp' 
(on the scale of L ( t ) )  discontinuities at domain walls, and an auxiliary field m ( r , t )  
that varies smoothly near walls. In the OJK theory m ( ~ ,  t )  obeys a simple diffusion 
equation and is normally distributed. In the Mazenko approach, only the assumption 
that m ( r , t )  is normally distributed is required. The Mazenko approach has the 
virtues that (i) the scaling function f(z) depends, unlike that of OJK, explicitly on 
spatial dimension d; (ii) the known exact rcsult lor d = 1 is recovered [9] in the 
limit d -+ 1; and (iii) the exponent describing the decay of autocorrelations [6, 101 
emerges naturally, and a non-trivial value for this exponent is obtained Ill]. 

oM5544770~2/082l9l+17$04.50 @ 1992 IOP Publishing Ud 2191 
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There has been much recent interest in phase ordering in systems with more 
complicated symmetries such as ncomponent vector models’[4-6, 121 and the nematic 
phase of liquid crystals [13]. In this paper we extend Mazenko’s approach to a 
general ncomponent non-consewed vector order parameter with O(n) symmetry. A 
key ingredient of the calculation is the analogue for general n of the OJK scaling 
function. This function has been derived very recently by Bray and Puri [14] (Note 
that the scaling variable is taken to be ~ / 2 &  in this paper, rather than r / f i  as in 
[14].), and independently by Tbyoki [15]. It has the interesting feature that the Fourier 
transform g(k) of the scaling function f(z) has the power-law tail g ( k )  - 
a simple generalization of the familiar ‘Porod’s law’ [16] for n = 1. We shall find 
that this feature is preserved by the Mazenko scaling function. 

In the following section we review 
Mazenko’s theory for a nonconserfed scalar order parameter (n = 1). This serves as 
a useful background to the case of general n discussed in section 3. There are many 
simplifications for n = 1 ,  the most important being that the ‘smooth’ field m can ul- 
timately be eliminated to derive an equation for the scaling function f (z )  itself. For 
general n this is not possible, and the mathematics is consequently more involved, 
although the treatment is as conceptually simple as before. Section 4 contains a dis- 
cussion of the correlation function between the fields at different times. The results 
are presented in section 5, while section 6 considers the relation of the present theory 
to earlier approaches. Section 7 concludes with a discussion and summary. 

The outline of the paper is as follows. 

2. The Mazenko theory for 7% = 1 

We start from the time-dependent Ginzburg-Landau equation in the form , 

a+/at = V2& - VI($)  (2) 

where VI($)  d V / d +  and the potential function V ( & )  has the usual ‘double well’ 
shape, with stable minima at + = fl and a local maximum at + = 0. It may help to 
keep in mind the familiar quartic potential, V ( & )  = -d2/2 + +4/4, but the precise 
form of V ( + )  is not important in what follows. 

It is useful to consider the general two-time correlation function 

C(12) = [+(1)&(2)1 (3) 

where we have introduced the compact notation in which ‘1’ stands for the spacetime 
point (z l , t l ) ,  etc. Multiplying (2), evaluated at the point ‘l’, by 4(Z) and averaging 
over initial conditions, gives 

8C(12)/at1 = V:c(12)- [d>(2)V‘(&(l))] (4) 

where 0: indicates the Laplacian with respect to coordinate zl. Since, by translational 
invariance, C(12) dcpends on z ,  only through the relative wordinate T = z1 - z2,  
we can drop the subscript on Vz in (4) and regard it as the Laplacian with respect 
to r .  

The key step in simplilying (4) is to introduce the nonlinear transformation 

+ ( r , t )  = 4 ? n . ( T , t ) )  (5) 
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where the function U (  m) is a 'sigmoid' function, Le. U (  m )  increases monotonically 
from -1 at m = -w to +1 at m = fm. A very convenient choice for this function 
is defined by the equation 

The factor 4 in (6) is conventional. Comparison with (2) shows that, with the choice 
(6), U (  m) gives essentially the equilibrium order parameter profile across a domain 
wall, with m interpreted as a coordinare normal to the wall. In particular, the positions 
of the walls are obtained from the zeros of the field m ( r , t ) .  As a concrete example, 
V(+) = -&/2 + $*/4 gives u ( m )  = tanh(m). Using (6) in (4) gives 

So far there are no approximations. Mazenko now makes the key assumption [7] 
that the field m ( z ,  1 )  has a Gaussian distribution (with zero mean) at all times. Then 
the final term in (7) can be expressed in terms of C( 12) itself, a follows. For a Gaus- 
sian distribution (with zero mean), the joint probability distribution @ ( m ( l ) ,  m(2))  
can be expressed in terms of the second moments, i.e. in terms of 

s0(1) = [ m ( ~ ) ~ ]  ~ ~ ( 2 )  = [ m ( ~ ) ~ ]  C0(12) = [in(l)m(2)]. (8) 

In fact 

= IS(xl-  n.(1))6(x2 - m(2)) l  

where 

'RI exploit this distribution we write C(12) in terms of the Fourier components of 
a ( m ) :  

C(12) = [ u ( m ( l ) ) u ( m ( 2 ) ) ]  

= o , ~ ~ , ~ [ e x i ) { i k . ~ i , f . ( l )  t ik2in(2))] 

= ~ , . , o , 2 e x l ' { - ~ ( ~ o ( ~ ) k ?  + 'LC,( I~)L,~C,+ s,(z)~c;)) (11) 

k 1 , b  

k 1 , h  

where the final line Iollows from (8) and (9). Similarly, it follows immediately that 
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Wlth this useful result (7) can be simplified to 
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Finally we need an expression for C(1Z) in terms of So( l ) ,  S 0 ( 2 )  and Co(12). 
The essential simplification here is that, in the late stages of growth, where the 
domain scale L(1)  is much larger than the intrinsic thickness of the domain walls, 
the walls may be treated as sharp, i.e. for the evaluation of C(12) equation (5)  may 
be replaced hy 

a ( T , t )  = sgn(m(r, 1)) (14) 

in the scaling regime, to give 
, - ~ ~ .  CjiZj = j s g n j m j i j j s g n i m ~ ~ ) j j  

the last line following from the Gaussian average over ~ n ( 1 )  and m(2) with the 
weight given by (9). 

The derivative in (13) can now be evaluated: 

Putting this in (13) gives Mazenko’s nonlinear differential equation for C(12): 

This equation describes the space and time dependence of the two-time mrrela- 
tion function C(12) = [&(z1 , t1)&(z2 ,  t z ) ] .  As a consequence of the translational 
invariance of the ensemble of initial conditions. we have observed that C(12) de- 
pends on I,, z2 only through T = I, - x2.  However, it does depend separately on 
t ,  and t2. It is possible to solve (17) for the full dependence on 1 ,  and t 2 ,  but as a 
first step one needs to consider the equal-time correlation function, with t, = t, = t. 
This is the function whose Fourier transform, the equal-time structure factor, h di- 
rectly measurable via small-angle scattering experiments. We will return to the case 
of general t , ,  1, in the following section where the theory is extended to arbitrary n. 

For 1 ,  = 1, = 1, the differential operator a / &  hits both fields in C(12),  so 
instead of (17) the equation for the equal-time correlation function is 

I OC(12) 1 tall (HC(”)). r 
- V‘C,yl.L) + Ks,o 2 at 

I n  the late stages of growth, one expects a scaling solution of the form (1). Looking 
at the dimensions of the three terms in (IS), one sees that this implies L(1) - f’”, 
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and that for consistency one must have S,,(l) - 1. The latter is consistent with the 
definition S,(1) = [m(1)2], the interpretation of m as a length, and the scaling of 
lengths as t i lz .  Therefore we write 

S,(1) = t/x = L(i)*/X (19) 

C(12)= f - (2  
where the dependence on r=ITI  follows from isotropy. Then one obtains the following 
differential equation for the scaling function f(x): 

where primes indicate derivatives with respect to x. Note that our notation in (19) 
differs from that of Mazenko. 

’lb solve (21) for the scaling function f( z) we need to supply initial conditions 
and also to determine the value of A. We first discuss the initial conditions. Clearly 
f(0) = 1 follows immediately from (I) when we remember that 4 = fl are the 
equilibrium values of the order parameter. For z - 0, the divergence of the final 
term in (21) (as f -+ 1) must he cancelled by a corresponding divergence of the term 
(d-  l)f’/z. This implies that 1 - f(z) - z, for x -+ 0. Substituting this into (21) 
gives 

(22) 

The required initial conditions are thus f(0) = I ,  f’(0) = - ( 1 / ~ ) { 2 A / ( d - l ) } ~ / ~ .  
For any given A, (21) can now be integrated forward (numerically) to obtain the 
solution for all z. So what determines A? 

As discussed by Mazenko [7], X is f ied by requiring the correct behaviour at 
large I. For z >> 1, f(z) will he small and t,an(rrf/2) in (21) can he replaced 
by its argument, giving a linear equation for f valid at large z. This equation has 
two linearly independent solutions, f, and f2 ,  whose large x behaviour is easily 
determined: 

For general A,  the solution obtained by integrating (21) forward from (22) will he, for 
large x, a linear combination of fi and f2, i.e. /(z) = A(X)f,(x)+ B(X)f2(z) for 
z + 00. However, for a typical initial ficld conliguration (with only short-range spatial 
correlations), as would he obtained by quenching from the high temperature phase, 
only fl is physically sensible. This determines X from the condition B(X) = 0,  
i.e. the coelficient of the unphysical power-law tcrni f2 should vanish. We have 
noted elsewhere [17], howcvcr, that the solution f2(x) can have physical meaning, if 
the system is quenched from an initial statc whcrc /ong-ronge correlulions ore arready 
present, e.g. the equilibrium statc at the critical point. In  this case a family of solutions 
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exists, with continuously varying X (such that B(X) > 0), the value of X being related 
to the exponent of the power-law decay of spatial correlations in the initial state. 
This phenomenon has been discussed quite generally using renormalization group 
arguments [18]. 

We have discussed the Mazenko theory for a scalar order parameter in some 
detail, as the extension to general n requires little extra work and involves no new 
points of principle. However, the results are mathematically neater for n = 1: no 
simple equation like (21) can be derived for n > 1. 

A J Bray and K Humayun 

3. Phase ordering for general 71 

The general approach is the same as for n = 1, the main difference being that the 
important topological structures are no longer domain walls but vortices (or vortex 
lines) for n = 2 and monopoles (or ‘hedgehogs’) for n = 3. The field m ( r , t )  will 
become, for general n, a vector field ?i i ( r , t )  which, in the vicinity of a topological 
singularity in the field 4, plays the role of a position vector from the singularity to 
the point r. 

For a vector field with O ( n )  symmetry, the analogues of equations (2)-(4) are 

a4/at = v2d- av/a&’ (25) 

C(12) = [4(1).4(2)1 (26) 

ac (12 ) /a l l  = V?C(12) - [&). av/a$( l ) ] .  

$ ( r , t )  = Z ( % ( r , t ) )  (28) 

(27) 

By analogy with (5) we introduce the nonlinear transformation 

where % ( ~ , t )  is a vector field with the same internal dimension as 4, ie. n. We 
define the function .‘( 73) by analogy with (6): 

where V k  is the Laplacian operator with respect to the vector 6. Comparison 
with (25) shows that a(?%) represents the equilibrium field due  to a single vortex 
(vortex line, hedgehog, etc) with 7: interpreted as (apart from a factor of 1 / 4 )  
a position vector from the vortex core. Clearly there is a family of such solutions, 
related by rotations, just as the relevant solution of (6). representing a domain wall, 
is determined only up  to an overall sign. For the scalar case we chose the solution for 
which U and ?n have the same sign. For the vector case we will choose the solution 
where and 7% are everywhere parallel (such a solution clearly exists, by symmetry). 

At this juncture we should note that the physical picture of 7: as a position vector 
in the real ddimensional space of necessity requires n < d. We will return to this 
point later, but for the moment will wntinuc to regard n as arbitrary. 

to have a Gaussian distribution 
with zero mean. This means, in particular, that each Cartesian component of % ( r , t )  
is independently distrihuted. Thus the joint probahility distribution of ~ % ( l )  and 

Following the treatment of n = I ,  we take 
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6 ( 2 )  is simply a product of the separate distributions for each component The joint 
distribution for a single component is described by equations (8)-(lo), where m(l), 
m(2) are the (same) specified component of t % ( l ) ,  nl(2). 

Using the distribution (9), obvious generalizations of (7), (11) and (12) lead once 
more to (13). As before, the final step is to express C(12) in terms of S,,(l), S0(2)  
and C0(12) so that the derivative in the final term of (13) can be taken, ie. we need 
an analogue of (14) for vector fields. Just as, in the scalar case, the magnitude Of 

the fie!d ~ saturated (d2 = 1) at late imes  except near a domain wall, so in the 
vector case the field will be saturated (&2 = 1) except near topological singularities 
such as vortex lines. The effect on C(12) of the depletion of $* near, e.g. a vortex 
core, will be negligible at late times (the change in the direction of $ due to a vortex 
is, however, important), since the 'core size' is independent of time and therefore 
negligible compared to L ( 1 )  at late times. By analogy with (14) we therefore write 

5(r ,1)  = G(r,t)/I<~(r,t)l (30) 

instead of (28). recognizing that 5 is a unit vector nearly everywhere at late times. 
In the scaling regime, therefore, one obtains, 

(31) 

It remains to evaluate the average, using a product of n distributions of the form (9), 
one for each component of the field. This calculation was done in [14]. The result is 

where B(z,y) = r(z)r(V)/r(z + V) is the beta function, F ( n , b ; c ; z )  k the 
hypergeometric function, and y is given by (10). One can verify that (15) is recovered 
for n = 1. 

Following (16) precisely, we can evaluate the derivative appearing in the final 
term of (13) as 

Substituting this into (13) gives a generalized version of (17), 

and, for 1 ,  = t 2  = t ,  a generalized version of (Is), 

For the special case n = I ,  for which (32) reduces to ( 1 9 ,  it is easy to eliminate 
y in favour of C(12), and one wn verify that (17) and (18) are recovered. For 
general n, however, it is not possible to eliminate 7. We are therefore forced to 
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work with y as our independent variable, rather than C. Defining a parameter X 
through (19), and imposing the scaling form (20) once more, yields the following 
differential equation for equal times: 

Here primes indicate derivatives with respect to the scaling variable z = v/&, C, 
means dC/dy  etc, and C(y) is the function given by (32). 

This procedure is a little complicated, so we will pause to summarize the main 
points. Equation (36) is our main result for general n, equivalent to (21) for n = 1. 
Equation (36) is an equation for the function ?(I), where z is the scaling variable 
r/&. The equal-time correlation scaling function f(z), the quantity of physical 
interest, is obtained by substituting the solution y(z) of (36) into the right-hand side 
of (32). This procedure is straightforward to implement numerically. First, however, 
we must discuss once more the initial conditions and the value of A. 

The initial condition y(0) = 1 follows immediately from the definition (10) of y 
and the definitions (8). Similarly, one can show from (35) and (36) that y'(0) = 0 
for any n. We shall discuss the precise small-z form of y(z), and the corresponding 
form of f(z), in more detail in section 6, when we show that f(z) has a leading 
singularity of order ( 2 ' q n i 4  (plus a 111 z factor for even n), implying a power-law 
tail, g(k) - /c-(~+"), in the structure factor (the Fourier transform of f(z)), in 
accordance with the predictions of Bray and Puri [14] and Tbyoki [IS]. For the 
moment, we simply note that, for any n, y(0) = 1, y'(0) = 0 are the appropriate 
initial conditions for (36). 

The value of X is determined exactly as for n = 1, by dcmanding that the solution 
obtained by integrating forward from the initial conditions match on to the correct 
physical solution at large z. For z -+ 03 we have y - 0, and (36) can he linearized in 
y, by dropping the second term. This linear equation then has exactly the same form 
as the linearized version of (21) (in fact from (32) it is clear that C(12), Le. f(z), 
and y(z) differ only by an overall factor for y - 0), so the large-z solutions have 
the form (23) and (24) for any n (although X will depend on n). So we determine X 
once more by demanding that the amplitude of the power-law solution f2(z) vanish. 

Before presenting the numerical results for the equal-time scaling function we 
complete, in the following section, the presentation of analytical results by consid- 
ering general two-time correlations. In particular, we will see that the parameter X 
determines [l I]  the exponent that characterizes non-equilibrium autocorrelations in 
the phase ordering process [6, lo]. 

4. Wo-time correlation functions 

Our treatment here follows that presented by Liu and Mazenko [I l l  for n = 1 .  
The correlation C( 12) between fields at gcncral spacetime points (a! , , t l ) ,  ( z 2 , t 2 )  
satisfies (34). For simplicity, we will specialize to the case 1 ,  >> t z ,  although the 
general case can also be handled using the methods of [ll]. b r  t ,  >> t , ,  the 
correlation C( 12) will be small and the final, nonlinear, term in (34) can be linearized. 
Since, for y - 0, C(12) -constant 7, we havc y(i)C/ay) = C to linear order. 
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For general i,, t ,  we also need S,(l) = i , / A  instead of (19). Then (34) becomes 

x 
=O~C(12)+-C(12) .  

OC(l2) 
at,  21, (37) 

’b solve this equation we Fourier transform in space, and then integrate forward 
from an initial condition at 1,  = at,, with a >> 1, so that the linear equation (37) is 
valid for all f ,  at,. Calling Sk(t,,t2) the Fourier transform of C(12), we obtain 

A I 2  
Sk( t  I’ 1 ) - - (Ctt,) -2- e x p { - k 2 ( t ,  - at,)} S k ( a t , , t 2 ) .  (38) 

Imposing the scaling form S,(at,,t,) = (8 r r t , )d /2g , (k2 t , ) ,  with g,(O) = constant, 
m i  Fmrier ”rmilrg back :e rea! space $i.p., br t ,  > et,, 

( d - A ) / ?  
C(12) = 9 (0) 5 

(39) 

By construction, g , ( 0 ) / a A f 2  must be independent of a for large a, so our final 
result for the two-time correlation function is 

( & A ) / ,  

C(12) = constant (2) exii (-&) t ,  B t , .  (40) 

’b determine the constant prefactor would require integrating the full nonlinear 
equation (34) which can be done numerically. 

The pre-exponential factor in (40) has the form { L ( t , ) / L ( t , ) ) ’ ,  with 
- 
X = d - A .  ( 4 9  

In particular, putting 7’ = 0 in (40) shows that x describes the decay of autocorrela- 
tions as a function of t ,  at fixed 1,. This exponent has been measured in simulations 
of vector spin systems [4, 191, and also calculated in a 1 /n  expansion [6], and in 
the following section we will compare the predictions of the current theory with both 
simulation results and 1 / n  results. 

5. Results 

Table 1 contains the values of A,  for various n and d ,  determined as described earlier. 
Also listed are the corresponding values A,,,,, obtained, via (41), from simulation 
results [4, 191 for x. Equivalent results for 7 1  = 1 have already been given in [7], so 
we specialize here to 7~ 2 2. 

The blank entries in the table indicate either that no simulation results for X 
are available (d = 2, 7% = 2), or that the hchaviour of the system is in some way 
anomalous. For example, the d = 1 ,  I I  = 2 system has a domain scale growing 
as t1I4, rather than f ’ f 2 ,  a Gaussian scaling function f(z), and an autocorrelation 
function of ‘stretched exponential’ form [4]. None of these features is recovered by 
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the Mazenko scheme, naively applied. However, one can argue that the way in which 
the calculation is set up restricts its applicability to systems with n < d. 

A J Bray and K Humayun 

lhbk l. Values of the exponent A, obtained using the Mazenko thmry. Equivalenl 
simulation results, A.;,,,, are shown where available. 

L A  0.301 0.378 0.414 

2 x  0.829 0.883 0.912 

3 x  1.382 1.413 1.432 

A,;, - 0.352(5)’ 0.420(8)’ 

X*i, - - 0.89(l)b 

141 
[I91 

This is because the ncomponent vector field 7 i i ( r , t )  has a physical interpretation 
as a position vector from a topologically stable singularity (e.g. a vortex) in the field 
; (z , t )  to the point T, when 1’ is close to the singularity. Clearly this interpretation 
only makes sense if the dimension n of the vector 7% is less than or equal to the 
dimension d of space. The equations derived using this interpretation, however, show 
no peculiarities for n > d, and indeed the values of X obtained for d = 1, n = 3,4 
and for d = 2, n = 4 are in quite reasonable agreement with the simulation results. 
The case d = 2, n = 3 is another apparently anomalous system and does not seem 
to exhibit simple scaling [19]. We shall return to the general question of the validity 
of our approach for n’ > 11 in section I. 

x 

Figure 1. Scaling function J(z) for llir equal-lime mrrelalion function plotted against 
&?ling variable L = ~ 1 4 ,  for n = (1 = 2: full NIV~. Mazenko theory; broken curve, 
Bray-Pun function 1141. 

Figures 1 and 2 display the scaling functions f(z) for d = 2, n = 2 and d = 3, 
n = 3. Recall that these are obtaincd by solving (36) numerically, with initial 
conditions y(0) = I ,  ~’(0) = 0 and X given in table 1, and substituting the result 
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0.8 

x 

Figure 2. Same as figure I ,  but for n = d = 3 

into (32). These are fairly smooth functions with, on the surface, no interesting 
features. The large-z behaviour has the form (23). A close inspection of the small-z 

+G a 
p e r - l a w  decay of the form k-(d+") in the Fourier transform of f(z), the scaling 
function for the equal-time structure factor S,( t , t ) .  The case n = 1 is the familiar 
Porod's law [16], whose form follows from (22). The general n result was suggested 
by Bray and Puri [14], and by Tbyoki [U], from a somewhat simpler treatment of the 
scaling function. The Bray-Puri (BP) scaling functions are included in figures 1 and 2 
for mmparison, and are not too different from the  ones calculated earlier. A detailed 
mmparison of the present theory to that of BP is given in the following section where, 
in particular, we explicitly consider the small-z form of the scaling function in both 
theories. 

gm;::, !)G.ae+e:, repah t\a; f(.) & singi;!a; a; j .  = 9, and ;hk & pGiii 

6. Comparison with other theories 

The BP scaling functions [14] were derived using a generalization to arbitrary n of 
earlier approaches to the scalar theory by Kawasaki er a1 ( K Y G )  [20], and by Ohta et 
al (OJK) [8]. These two approaches, while conceptually different, lead to the same 
scaling function f(z).  

The KYG theory starts from (2), with V'(+) = -4 + qh3. Ignoring the qh3 term 
yields a linear equation with the solution d ~ " ( . , t )  = e x p { t ( l  + V*))d(z,O). Rein- 
stating the d3 term perturbatively leads to a divergent perturbation series which can, 
however, be summed approximately Cor late times by retaining only the dominant (as 
t -t 00) divergence in each diagram and neglecting the momentum dependence in 
certain factors (the perturbation theory is done in momentum space). The result is 

Since do blows up  exponentially with time, at late times (42) can be simplified to 

qhKyc(=,t) = w ( q h o ( z , i ) ) .  (43) 
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The exponential factor in & is now irrelevant, since it drops out when the sign is 
taken. The final result can therefore be written more simply in terms of a function 
m ( z , t )  that obeys the diffusion equation: 

A J Bray and K Huniayun 

This result is now in the form (14), i.e. the original field 4, with its discontinuities at 
domain walls, has been written in terms of a 'smooth' field m. If the initial condition 
on m has a Gaussian distribution, then the m distribution is Gaussian for all times 
since m obeys the linear equation (45). Therefore (15) can be taken over, with y 
given by (10) and ( S ) ,  i.e. 

In the Mazenko theary, y is determined self-consistently using only the assumption 
that m has a Gaussian distribution: the result is that 7 obeys (36). In  KYG, m obeys 
the diffusion equation ( 4 9 ,  giving y explicitly (for equal times) as y = exp(-r2/8t), 
and 

CKyG(12) = ( 2 / r r )  sin-'(exp{-r2/8t}). (47) 

OJK again use a mapping of the form (44), but deal directly with the motion of 
interfaces, i.e. the surfaces on which m = 0. A sort of mean-field treatment of the 
resulting equation again leads to  ( 4 9 ,  but with a diffusion constant of ( d  - l ) / d  
instead of unity. Thus the form (47) is again obtained, but with 8 - 8 ( d  - l ) / d .  
The factor ( d  - l ) / d  reflects the absence, for d = 1 ,  of driving forces due to wall 
curvature. 

The KYG arguments have been used for general n by Bray and Puri [14], and 
essentially equivalent results obtained by 7byoki 1151. The special case n = 2 had 

from the scalar theory is that q5 and +,, become n-component vectors giving, instead 
of (44) and ( 4 9 ,  

ni~.?:n..e111 hnnn trnntnrl h . 1  D..r: qnrl Dnlqnrl 1 1 1 1  q n r l  h - r  D.ir: 1771 Thn nnh rh-nno p.,"I""",y "lbll  L l L P L b "  "y I" , ,  Llll" I \ " I P 1 1 U  LA') 'a,," "y I " . l  L * L ) '  1111 YL..J .,.lY..&U 

a7i;/at = v26 .  (49) 

With a Gaussian distribution for the field 6 at 1 = 0, the final result is simply (32), 
but with y taking the specific form 

= exp(-x2j8)  .x = TI&. (50) 

Since C(12) ,. y for small y, the large-r behaviour of fBp(z) is the same as 
(23), apart from the power-law prefactor. Tb investigate the small-r behaviour of both 
theories we need to look at the limit y - 1. 7b determine the small-r behaviour 
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of y within the theory of section 3, we return to (36). From the properties of the 
hypergeometric functions 1231 one can show that, for y -, 1, 

- { (1 -y ) l In (1 -y )1 ) - '  n = 2  

(1 - -/)("-4)/2 2 < n < 4  

- I ln(1 - -y)l n = 4 - constant n > 4. 

(5') 

With these results one can see that (36) has a small-z solution of the form 

(52) 2 - / = l - a z  f.... 

Substituting this into (36), and using (51), we see that the nonlinear term in (36) only 
suMves for z + 0 for n < 2, and that 

n 2 2 .  
x 

4d 
- -- 

(53) 

These results, which should be compared with aBp = A ,  justify our use of initial 
conditions y(0) = 1, y'(0) = 0 in solving (36). 

It should he noted that the BP scaling function is independent of the spatial 
dimension d, as is clear from (32) and (50). Liu and Mazenko [9] have noted that, 
for n = 1, the KYG scaling function (i.e. the 7 i  = I case of BP) is recovered from 
the full Mazenko theory in the limit d + 00. A similar result, in fact, holds for all 
n. 'Aking d large in (36), it is clear that X must wry as d for large d so that the 
final term in (36) cancels the term (d/z)y'. Retaining only these two terms gives 
y = exp(-XzZ/4d) for large d. Requiring that  this match the form (23) at large z 
fixes X = d/2  and y = eqi(-zZ/8)-for  d 4 00, i.e. the BP result (50) is recovered 
in this limit. 

From the small-z behaviour of y one can extract the small-z behaviour of the 
scaling function f(z). This is accomplished by using the transformation formulae for 
the hypergeometric function [23] to rewrite (32) in the form 

As has been stressed by Bray and Puri, the second term is non-analytic in (1 - y2), 
Le. in 12, for z + 0, generating a term of order 1:'' (plus logarithmic corrections 
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when n is even). The result is that the equal-time structure factor S k ( t , t )  has a 
power-law tail of the form L( t ) -"  I d d + " )  for k L ( 1 )  >> 1 [14]. Hence this tail is 
" n o n  to both Mazenko-type and KYG-type theories, since they both have the same 
small-z form (52) for 7, differing only in the value of a. The tail has been observed 
in simulations 115, 241, and it would be interesting to seek experimental confirmation 
of i t  

It is also interesting to look at the theory in the limit n >> 1, where exact results 
are known [S, 61. From (32) it is easy to show that 
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(55) 
1 C(IZ) = y - z ; I y ( ~  - yZ) + O(n-2).  

This forms the basis for a penurbative solution in powers of l/n. The calculation is 
straightforward, so we will omit the details. The most interesting result is that X k 
g V G , r  "y "L-.. L.. 

which can be compared with the exact O ( l / n )  result [6] 

where B(z,y) = r(z)r(y)/r(z + y) is the beta function. The difference between 
these results, which is numerically small, implies that the Mazenko-type theories are 
not exact in general, though they capture most of the important physics. We recall 
that KYG-type theories, such as BP, give X = 11/2 for all n. 

7. Discussion and summary 

Mazenko's theory of phase ordering dynamics 171 has been generalized to systems 
described by an n-component vector order parameter with O ( n )  symmetry. The key 
idea was to write the order parameter field 4 as a nonlinear function (defined by (29)) 
of a field rii such that 7% varies smoothly in space at points where 4 has topological 
defects. The vector 7% is everywhere parallel to 4, but its magnitude measures, close 
to a defect, the distance from the defect. The single assumption is that rii can be 
treated as a Gaussian random field. 

The main result is contained in (32) and (36), which together determine the scaling 
function f ( z )  for the equal-time correlation function C(12). The parameter X 
appearing in equation (36) has, as shown in section 4 and [Ill, physical significance as 
the exponent characterizing different time correlations [4, 6, IO]. It is determined by 
the condition that the equal-time correlation function have the correct large distance 
behaviour. The values of X for 2 < 

The scaling functions f (z )  for n = 11 = 2 and n = d = 3 are displayed in 
figures 1 and 2, where the equivalent functions obtained from the approach of Bray 
and Puri [I41 are included for comparison. Note that these comparisons are absolure, 
i.e. the scaling variable is T / &  in all cases. In comparing the theory with experiment 

< 4, and 1 < d < 3, are given in table 1. 
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or simulations, the absolute units of time, to be used in (2), will not in general be 
known (Unless (2) is solved directly), and the characteristic scale L ( t )  will have one 
overall free parameter to be fitted. If one allows such a free parameter in figures 1 
and 2, by rescaling the abscissa for the Bray-Puri curves (which would correspond 
to changing the ‘diffusion constant’ from unity in (49)), the agreement is very good 
indeed. We recall that the Mazenko theory reduces exactly to Bray-Puri in the limit 
d-m. 

VVUUG LUG a ~ u u g  LUIILLIVIW iii figiiej i aiiii 2 aie a h “ i  feaiiifeies, we >KV~ 
shown that they carry a (leading) short-distance singularity of the form I”, with an 
extra In z factor when n is even. This leads to a power-law tail, S,(t, t)  a k-(d+”)  in 
the structure factor, Le. the Fourier transform of the equal-time correlation function. 
This tail, which for 71 = 1 is the familiar ‘Po;od’s law’ [16], is common to both 
Mazenko and Bray-Puri theories. lbyoki 1151 has independently obtained the same 
result by assuming that topological defects in the system can be modelled by the zeros 
of a Gaussian random field. This raises the interesting question of whether such a 
tail b to be expected in systems where no topologically stable defects exist. For scalar 
fields, for example, it is quite clear that Porod’s law is a simple consequence of sharp 
domain walls. The probability that two points a distance T apart are in different 
phases, for 1‘ << L ( t ) ,  is just the probability that a domain wall passes between 
the points, and is of order r /L(t ) .  This gives C( 12) = 1 - constantr/L + . . . for 
r &L, which leads directly to Porod’s law. For n 2 2, Bray and Puri’s generalization 
of Porod‘s law can also be derived by a direct consideration of the role of topological 
defects. lb illustrate the point we consider the case n = d = 2, for which the defects 
are vortices. 

a t  points 5 and x + r in the presence of a vortex at the 
origin. We make the natural assumption that the vortex density is of order L - 2  and 
take lrl << 111 << L,  i.e. we are looking at two nearby points whose separation is 
much smaller than their distance from the vortex, but which are much nearer to the 
given vortex than to any other. Then the field &’ at the two points is saturated in 
length and, up to a global rotation, can be taken to he directed radially outward from 
the origin. Thus 

. l I L : t n  .La ^^^I:^” f ...̂ . :....- ’ 

Consider the field 

With T held fixed we now average the result over all possible relative positions of the 
vortex, i.e. over all values of z within an area L2 around the pair of points: 

C(12) = [&a) .  4(z + r)] 

Fburier transforming this gives S,( 2 ,  t )  - 1 / k 4  L2 for k L  >> 1, which is the special 
case d = n = 2 of the general k-(”f”)  tail. This argument can be extended to 
general n Q d, where stable defects occur. 
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Given that the tail can be ascribed directly to the role of topological defects, is 
the tail still present in the absence of stable defects? This is an open question at 
present. The case d = 1, n = 2 presents a counter-example with no power-law 
tail [4]. The Bray-Puri and Mazenko approaches both give a tail for all n and d. 
However, the interpretation of the Mazenko theory is problematical for n > d, since 
the dimension of the vector 7% which is supposed to represent a spatial vector, would 
then be greater than that of the space in which it resides. It may be that there is a 
variant of the Mazenko theory which avoids this problem for n > d. 

We began by mentioning some of the strengths of the Mazenko approach: the 
explicit ddependence, the recovery of the exact result for d = 1 = n, and the emer- 
gence. of the exponent X in a natural way. We conclude by noting a residual deficiency, 
which we illustrate for n = 1, namely its inability to reproduce correctly the structure 
of the domain walls. Real walls have a well-defined profile, given by the stationary 
solution of (2) with 4 varying only in, say, the z-direction, with boundary conditions 
q4(&00) = f l .  For such a wall, lV&l, evaluated in the interface (i.e. where 4 = 0), 
has a precise value. This implies that I V T ~ J  should have a precise value. In fact, 
comparing (2) and (6) implies lVml = l/& in the interface for an ‘exact’ solution. 
In the Mazenko theory, however, m is a Gaussian random field, so each component 
am/azi  of V m  is an independent Gaussian field, and is independent of m itself. 
Therefore lVml will have a distribution of values, rather than a unique value, at 
interfaces, ie. there is a distribution of interfacial widths. It is interesting, however, 
that in the limit d - 00 the central limit theorem ensures that IVm( does have a 
precise value: IVml - (d[(~n’)~])’/~, where m’ = aTn/azi for some i ,  gives (us- 
ing (8) and (10)) l V ~ n l  + (d{[(m’)2]/[m2])[m2])’/2 = (d{-r”(.)/t)S,(l))’/2. 
Using (19) for S,(l) and (52) for ~ ( z )  gives lVml - I /&  for d - 00, which is 
the correct result. We conclude that the Mazenko theory is unlikely to be exact for 
general d, but may well become exact for large d .  It will be interesting to see if one 
can use this approach to develop a systematic expansion around the large d limit. 

After this manuscript was essentially complete, we learned of very similar work 
by Liu and Mazenko [25] (note that these authors use the symbol X for what we 
call E d - A). Where our results overlap we agree completely, except for some 
discrepancies in the values of the exponent A. Liu and Mazenko only quote results 
fer n = 2. 7hejr ~ s ; ! t .  for A, tc be mm7ired wkh the n = 2 r;l!umn nf t.b!e 1, 
read 0.315 (d = l), 0,832 (d = 2)  and 1.382 (d = 3). There is no discrepancy for 
d = 3, a small one (0.4%) for d = 2 and a somewhat larger one (4.7%) for d = 1. 
In the latter two cases, the differences are greater than the expected errors on our 
results (no greater than i ~ l  in the last figure quoted). We have checked our results 
and believe them to be correct. 
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